罗勇-pg电子夺宝试玩

 罗勇-pg电子夺宝试玩
pg电子夺宝试玩的联系方式

e-mail:luoyong@whu.edu.cn

办公电话: 027-68772967

办公地点:计算机学院

罗勇

武汉大学计算机学院 人工智能系 国家多媒体软件工程技术研究中心 教授 (博导)


  • 姓名:罗勇

  • pg电子夺宝试玩主页:

  • 性别:

  • 职称:教授 (博导)

  • 学历学位:博士

  • 电话:027-68772967

  • 办公地点:计算机学院

  • e-mail:luoyong ▇ whu.edu.cn 请手工替换符号

  • 领域:模式识别,人工智能,数据挖掘与分析

  • 招生信息:年度招收硕士0名,招收方向:。 招收博士0名,招收方向:。

研究方向

武汉大学计算机学院教授,博士生导师,国家特聘青年专家,多媒体汇刊ieee tmm ae(associate editor),人工智能领域ccf a类顶会aaai和ijcai的senior pc member。主要从事机器学习和数据挖掘及其在视觉信息理解和分析方面的应用研究工作。共发表论文40余篇高水平论文(包括ieee tpami等),是2016年中国计算机学会(ccf)优秀博士论文获得者。曾获得ijcai最佳论文提名(2540选3)和ieee globecom最佳论文奖,并与他的合作者获得ieee icme和ieee vcip最佳论文奖。


研究领域:人工智能,机器学习,数据挖掘,多媒体信息处理与分析


奖项:

2019    最佳论文,ieee多媒体博览会议(icme)

2019    最佳论文,ieee视觉通信和图像处理会议(vcip)

2017    最佳论文入围(3/2540),国际人工智能联合会议(ijcai)

2016    最佳论文,ieee全球通信会议(globecom)

2016    优秀博士论文,中国计算机学会

2014    优秀毕业生,北京大学

2013    国家奖学金,北京大学


教育背景

2009/9 - 2014/7,北京大学,理学博士
2005/9 - 2009/7,西北工业大学,工学学士


工作经验

2020/9 - 至今,武汉大学,计算机学院,教授
2014/9 - 2020/9,南洋理工大学,计算机科学与工程学院,博士后


教授课程

《机器学习与模式识别》


发表论文

书籍或章节:

[1] yong luo, dacheng tao, chao xu, "patch alignment for graph embedding," graph embedding for pattern analysis, springer, pp. 73-118, 2013.


主要期刊论文:

[1] yong luo, han hu, yonggang wen, dacheng tao, "transforming device fingerprinting for wireless security via online multi-task metric learning," ieee internet of things journal (iotj), vol. 7, no. 1, pp. 208-219, 2020.
[2] yong luo, yonggang wen, tongliang liu, dacheng tao, "transferring knowledge fragments for learning distance metric from a heterogeneous domain," ieee transactions on pattern analysis and machine intelligence (tpami), vol. 41, no. 4, pp. 1013-1026, 2019.
[3] yong luo, yonggang wen, dacheng tao, "heterogeneous multi-task metric learning across multiple domains," ieee transactions on neural networks and learning systems (tnnls), vol. 29, no. 9, pp. 4051-4064, 2018.
[4] yong luo, yonggang wen, dacheng tao, jie gui, chao xu, "large margin multi-modal multitask feature extraction for image classification," ieee transactions on image processing (tip), vol. 25, no. 1, pp. 414-427, 2016.
[5] yong luo, dacheng tao, kotagiri ramamohanarao, chao xu, yonggang wen, "tensor canonical correlation analysis for multi-view dimension reduction," ieee transactions on knowledge and data engineering (tkde), vol. 27, no. 11, pp. 3111-3124, 2015.
[6] yong luo, tongliang liu, dacheng tao, chao xu, "multi-view matrix completion for multilabel image classification," ieee transactions on image processing (tip), vol. 24, no. 8, pp. 2355-2368, 2015.

[7] yong luo, tongliang liu, dacheng tao, chao xu, "decomposition based transfer distance metric learning for image classification," ieee transactions on image processing (tip), vol. 23, no. 9, pp. 3789-3801, 2014.
[8] yong luo, dacheng tao, chang xu, chao xu, hong liu, yonggang wen, "multi-view vectorvalued manifold regularization for multi-label image classification," ieee transactions on neural networks and learning systems (tnnls), vol. 24, no. 5, pp. 709-722, 2013.
[9] yong luo, dacheng tao, bo geng, chao xu, stephen j. maybank, "manifold regularized
multi-task learning for semi-supervised multi-label image classification," ieee transactions on image processing (tip), vol. 22, no. 2, pp. 523-536, 2013.
[10] qiang fu, yong luo, yonggang wen, dacheng tao, ying li, ling-yu duan, "towards intelligent product retrieval for tv-to-online (t2o) application: a transfer metric learning
approach," ieee transactions on multimedia (tmm), vol. 20, no. 8, pp. 2114-2125, 2018.
[11] meng liu, chang xu, yong luo, chao xu, yonggang wen, dacheng tao, "cost-sensitive feature selection by optimizing f-measures," ieee transactions on image processing (tip), vol. 27, no. 3, pp. 1323-1335, 2018.
[12] jie gui, dacheng tao, zhenan sun, yong luo, xinge you, yuanyan tang, "group sparse

multi-view patch alignment framework with view consistency for image classification," ieee transactions on image processing (tip), vol. 23, no. 7, pp. 3126-3137, 2014.


主要会议论文:

[1] yong luo#, huaizheng zhang#, yonggang wen, xinwen zhang, "resumegan: an optimized deep representation learning framework for talent-job fit via adversarial learning," acm international conference on information and knowledge management (cikm), pp. 1101-1110, 2019.

[2] yong luo, tongliang liu, yonggang wen, dacheng tao, "online heterogeneous transfer metric learning," international joint conference on artificial intelligence (ijcai), pp. 2525-2531, 2018.
[3] yong luo#, huaizheng zhang#, yongjie wang, yonggang wen, xinwen zhang, "resumenet: a learning-based framework for automatic resume quality assessment," international conference on data mining (icdm), pp. 307-316, 2018.
[4] yong luo, yonggang wen, tongliang, dacheng tao, "general heterogeneous transfer distance metric learning via knowledge fragments transfer," international joint conference on artificial intelligence (ijcai), pp. 2450-2456, 2017. [distinguished paper award finalist, 3 out of 2540 submissions]
[5] yong luo, dacheng tao, yonggang wen, "exploiting high-order information in heterogeneous multi-task feature learning," international joint conference on artificial intelligence (ijcai), pp. 2443-2449, 2017.
[6] yong luo, yonggang wen, dacheng tao, "on combining side information and unlabeled data for heterogeneous multi-task metric learning," international joint conference on artificial intelligence (ijcai), pp. 1809-1815, 2016.
[7] yong luo, yonggang wen, dacheng tao, qiang fu, "toward effortless tv-to-online (t2o) experience: a novel metric learning approach," ieee global communications conference (globecom), december 4-8, 2016. [best paper award]
[8] yong luo, jian tang, jun yan, chao xu, zheng chen, "pre-trained multi-view word embedding using two-side neural network," aaai conference on artificial intelligence (aaai), pp. 1982-1988, 2014.
[9] yong luo, dacheng tao, chang xu, dongchen li, chao xu, "vector-valued multi-view semisupervised learning for multi-label image classification," aaai conference on artificial intelligence (aaai), pp. 647-653, 2013.
[10] yong luo, dacheng tao, bo geng, chao xu, stephen j. maybank, "shared feature extraction for semi-supervised image classification," acm multimedia (mm), pp. 1165-1168, 2011.

[11] shikang gan#, yong luo#, yonggang wen, tongliang liu, han hu*, "deep heterogeneous multi-task metric learning for visual recognition and retrieval," acm multimedia conference, pp. 1837-1845, 2020.

[12] huaizheng zhang, yong luo, qiming ai, yonggang wen, han hu*, "look, read and feel: benchmarking ads understanding with multimodal multitask learning," acm multimedia conference, pp. 430-438, 2020.

[13] yangxi li, han hu, jin li, yong luo*, yonggang wen, "semi-supervised online multi-task metric learning for visual recognition and retrieval," acm multimedia conference, pp. 3377-3385, 2020.

[14] huaizheng zhang, yuanming li, qiming ai, yong luo, yonggang wen, yichao jin, nguyen binh duong ta, "hysia: serving dnn-based video-to-retail applications in cloud," acm multimedia conference, pp. 4457-4460, 2020.

[15] yihang lou, ling-yu duan, yong luo, ziqian chen, tongliang liu, shiqi wang, wen gao, "towards digital retina in smart cities: a model generation, utilization and communication paradigm," ieee international conference on multimedia and expo (icme), 2019. [best paper award]
[16] yan bai, ling-yu duan, yong luo, shiqi wang, yonggang wen, wen gao, "toward intelligent visual sensing and low-cost analysis: a collaborative computing approach," ieee international conference on visual communications and image processing (vcip), 2019. [best paper award]


科研课题

[1] 国家自然科学基金面上项目,“利用多模态特征的图像搜索关键技术研究”,2014-2017,79万,参与。

[2] 国家自然科学基金面上项目,“基于迁移学习的图像搜索理论与方法研究”,2010-2012,32万,参与。


研究团队


知识产权


学术服务


成果展示


其他



网站地图